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ABSTRACT

Experimental data from jet-engine tests have indicated that unsteady blade row inter-
action effects can have a significant impact on the performance of multiple-stage turbines.
The magnitude of blade row interaction is a function of both blade-count ratio and axial
spacing. In the current research program, numerical simulations have been used to quantify
the effects of blade count ratio on the performance of an advanced turbine geometries.

INTRODUCTION

The need for improved durability and reduced noise levels has motivated engineers to
assess the effects of flow unsteadiness on the performance of turbomachinery components.
The aerodynamic interaction between adjacent blade rows can lead to a reduction of efficiency
and noise generation in turbine stages. The two principal types of aerodynamic interaction
axe usually referred to as potential-flow and wake interaction. Potential-flow interaction
results from the variations in the velocity potential or pressure fields associated with the
blades of a neighboring row, and their effect upon the blades of a given row moving at
a different rotational speed. This type of interaction is of serious concern when the axial
spacing between adjacent blade rows is small or the axial flow Mach number is high. Wake
interaction is the effect upon the flow through a downstream blade row of the vortical and
entropic wakes shed by one or more upstream rows.

The focus of the two-year effort has been to use two- and three-dimensional viscous,
unsteady vane/blade interaction numerical analyses to identify and alleviate the sources of
harmful aerodynamic interactions in an advanced turbine design. The goal of this final
progress report is to summarize the results of only the three-dimensional flow simulations.

NUMERICAL INTEGRATION PROCEDURE

Governing Equations

The governing equations considered in this study are the time dependent, three-dimensional
Reynolds-averaged Navier-Stokes equations:

where

U,+(F_+ F_)=+(G,+G_)u+(H_+ H.). = 0 (1)

V pv
pw
et

(2)
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For the present application, the second coefficient of viscosity is calculated using Stokes'
hypothesis, A = -2/3/_. The equations of motion are completed by the perfect gas law.

The viscous fluxes are simplified by incorporating the thin layer assumption [1]. In the
current study, viscous terms are retained only in the direction normal to the hub surfaces
and in the direction normal to the blade surfaces. To extend the equations of motion to

turbulent flows, an eddy viscosity formulation is used. Thus, the effective viscosity and
effective thermal conductivity can be defined as:

# -" [.IL Jr[.tT

#L I-IT

cp P.L PrT
(7)

The turbulent viscosity, #T, is calculated using the Baldwin-Lomax two-layer algebraic
turbulence model [1].

Solution Procedure

The numerical algorithm used in the three-dimensional computational procedure consists
of a time-marching, implicit, finite-difference scheme. The procedure is third-order spatially
accurate and first-order temporally accurate. The inviscid fluxes are discretized according to
the upwind scheme developed by Roe [2]. The viscous fluxes are calculated using standard
central differences. An alternating direction, approximate-factorization technique is used to
compute the time rate changes in the primary variables. Newton sub-iterations are used
at each global time step to increase stability and reduce linearization errors. For all cases
investigated in this study, two Newton sub-iterations were performed at each time step.
Further details of the numerical techniques can be found in Ral [3] and Dorney et al. [4, 5].

Boundary Conditions

The theory of characteristics is used to determine the boundary conditions at the vane
inlet and blade exit. For subsonic inlet flow four quantities are specified and one is extrap-
olated from the interior of the computational domain. The total pressure (or entropy, s), v
and w velocity components (or the corresponding tangential and meridional angles) and the

downstream running Riemann invariant, R1 = u + _ (or the total temperature Tt), are
2a

specified as a function of the radius. The upstream running Riemann invariant, R2 = u- __---:-y,

is extrapolated from the interior of the computational domain.

For subsonic outflow one flow quantity is specified and four are extrapolated from the
interior of the computational domain. The v and w velocity components, entropy, and the
downstream running Riemann invariant are extrapolated from the interior of the computa-
tional domain. The pressure ratio, P2/Pto, is specified at mid-span of the computational
exit and the pressure at all other radial locations at the exit is obtained by integrating the
equation for radial equilibrium. Periodicity is enforced along the outer boundaries of the
H-grids in the circumferential (0) direction.

For viscous simulations, no-slip boundary conditions are enforced along the surfaces of
the vane and blade airfoils. Absolute no-slip boundary conditions are enforced at the hub

and tip endwalls of the vane region, along the surface of the vane, and along the outer casing
(tip endwall) of the rotor blade. Relative no-slip boundary conditions are imposed at the



hub and along the surfaceof the rotor blade. It is assumedthat the normal derivativeof the
pressureis zeroat solid wall surfaces.In addition, a specified(zero) heat flux distribution is
held constant in time along the solid surfaces.Film cooling is simulated using transpiration
conditions at discrete grid points.

The flow variablesof Q at zonal boundaries are explicitly updated after each time step
by interpolating values from the adjacent grid. The zonal boundary conditions are non-

conservative, but have been determined to be accurate for transonic flows [6, 7].

Grid Generation

The Navier-Stokes analysis uses overlaid zonal grids to discretize the vane-blade flow field
and facilitate relative motion of the rotor [8]. A combination of O- and H-grid sections are
generated at constant radial spanwise locations in the blade-to-blade direction extending up-
stream of the vane leading edge to downstream of the rotor blade trailing edge. Algebraically
generated H-grids are used in the regions upstream of the leading edge, downstream of the
trailing edge and in the inter-blade region. The O-grids, which are body-fitted to the sur-
faces of the airfoils and generated using an elliptic equation solution procedure, are used
to properly resolve the viscous flow in the blade passages and to easily apply the algebraic
turbulence model. Computational grid lines within the O-grids are stretched in the blade-

normal direction with a fine grid spacing at the wall. The combined H- and O- overlaid grid
sections are stretched in the spanwise direction away from the hub and tip regions with a
fine grid spacing located adjacent to the hub and tip. An O-grid structure is used in the
region between the rotor blade and the tip endwall in the tip clearance region.

The computational grid for the first (EMD or RED) configuration, which consists of 2
high-pressure turbine (HPT) vanes, 3 HPT rotors, 2 low-pressure turbine (LPT) vanes and
3 LPT rotors, contains approximately 3.2 million grid points [81. The computational grid for
the redesigned (FFR or BLUE) configuration, which consists of 4 HPT vanes, 5 HPT rotors,

4 LPT vanes and 4 LPT rotors, contains approximately 3.7 million grid points [9].

THREE-DIMENSIONAL SIMULATIONS

Three sets of three-dimensional simulations have been performed for the EMD and FFR
geometries, including

• steady multiple-stage simulations without film cooling

• steady multiple-stage simulations with film cooling

• unsteady multiple-stage simulations with film cooling

The three-dimensional simulations were performed on the NAS Cray C90 located at NASA
Ames Research Center. The steady simulations were run until the solutions became invariant,
while the unsteady simulations were run until the solutions reached a marginally periodic
state (approximately 3 blade-passing cycles). Although this is the final report of the grant,
the unsteady simulations will be continued in the deferred queue on the NAS Cray C90 until
the end of the operational year (October). The extremely numerical large data base generated
during the course of these simulations will be transferred to tape and made available to
interested parties.



Film Cooling Parameters

The film cooling parameters are based on the design data for both configurations [10].
Tables 1 and 2 contain the specified injection parameters for the EMD and FFR geometries,
respectively. In both tables, the angles al and _ refer to the flow injection angles in the
streamwise and radial directions, respectively. The angles are measured with respect to the
local surface tangents. Thus, the film cooling fluid is injected in the streamwise direction at

an angle of 10 degrees. The injection angle is large enough to be realistic, yet small enough
to not disturb the boundary layer. The pressure at the injection locations is specified to be
equal to the value of the pressure without fluid injection, and the density is determined from
the perfect gas law. The injection velocity is determined from the calculated density, the
area of the control surface and the specified mass flow (dW/(NWin_et), where W is the mass
flow and N is the number of film cooling holes.

The film cooling holes are located between 20% and 80% of the span. In both geometries

each HPT vane contains 112 film cooling holes, each HPT blade contains 120 film cooling
holes, each LPT vane contains 120 film cooling holes and each LPT blade contains 64 film
cooling holes. Thus, the 2-3-2-3 EMD geometry is modeled with a total of 1016 film cooling
holes, while the 4-5-4-4 FFR geometry contains a total of 1784 film cooling holes.

Aerodynamic Data

Tables 3-8 contain the steady and time-averaged flow quantities at the inlet and exit
(midspan) of each blade row for the six simulations. Although there are differences between
the steady and unsteady results, the predicted data shows reasonable agreement with the
results of the two-dimensional simulations [11]. Table 9 contains the predicted efficiencies for
each of the simulations. The efficiencies of the FFR design are uniformly higher than those
of the EMD configurations. In the unsteady simulations, there appear to be large differences
between the HPT and LPT efficiencies. There are several factors which must be considered

when interrogating the distribution of the efficiencies predicted in the unsteady simulations,
including

The flow variables used to predict the efficiency are taken at the inlet and exit of
each blade row. However, in the endwall regions between rotating and non-rotating
components the rotation speed is gradually varied to avoid excessive velocity gradients.
This process causes local jumps in the total pressure and total temperature near the
endwalls.

The total pressure and total pressure are currently area-averaged in both the circum-
ferential and radial directions. There may be other methods, such as mass averaging,
which are better suited for three-dimensional simulations.

Although the absolute values of the predicted efficiencies may not be correct, the trends do

indicate improved flow characteristics of the FFR design.

Figures 1-3 contain the time-averaged surface pressure coefficient distributions for the
EMD configuration at 10%, 50% and 90% of the span, respectively. In this study, the
pressure coefficient is defined as

Cp= P_,,g-P, oo
½poou (8)
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Figures 4-6 show the surfacepressurecoefficientdistributions for the correspondingspan-
wise locations of the FFR geometry. While the midspan data show reasonableagreement
with the two-dimensionalresults [11],largespanwisevariations areobservedin the pressure
distributions (especiallyon the HPT bladesand LPT vanes).

Figures 7-30 contain the time-averagedradial distributions of the total pressure, total
temperature, Mach number and pitch angleat the exit of eachblade row in the EMD con-
figuration. For the HPT and LPT rotor blades,both absoluteand relative frameprofiles are
included. Note, the radial profiles areaveragedseparatelyin eachblade passageof a given
blade row. Differencesbetweenthe time-averagedprofiles in a given blade row usually indi-
catethat: 1) the solution is not completelytime periodic, 2) the solution containsfrequencies
other than the bladepassingfrequency(i.e., trailing edgeshedding,shock reflections,etc.),
or 3) a combination of both phenomena.The profiles for the HPT vaneindicate a large loss
region in the tip region (seeFigs. 7-10). At the exit of the HPT blade, the largest losses
are observed in the hub region (see Figs. 11-18). The large total temperature variations and
decreased Mach numbers near the hub are also an indication of high losses; and to some
extent these variables provide information about the path of the secondary flows. In the
LPT vane and blade passages the losses appear to be evenly distributed across the span of
the airfoils (see Figs. 19-30). However, large spanwise variations in the total temperature
and pitch angle are evident at the exit of the LPT blade; especially near the hub, which
indicates a large region of secondary flow.

Figures 31-54 contain the time-averaged radial distributions of the total pressure, total
temperature, Mach number and pitch angle at the exit of each blade row in the FFR config-
uration. The losses in the HPT vane are relatively constant across the span (see Figs. 31-34,
while the HPT blade exhibits a pocket of higher losses near 25% of the span (see Figs. 35-42).
In general, the spanwise distribution of the losses (and other flow variables) at the exit of
the HPT in the FFR design are smoother than those obtained in the EMD configuration.
The losses in the LPT vane are nearly constant across the span (see Figs. 43-46), while the
LPT blade shows an elevated loss region near 25% of the span (see Figs. 47-54). Again, the
total temperature, Mach number and pitch angle profiles indicate rather strong secondary
flows in the hub region of the LPT blade passage.

Figures 55-62 illustrate instantaneous static pressure and entropy contours for the first

blade passage of each blade row in the EMD configuration, while Figs. 63-70 contain the
corresponding contours for the FFR design.

CONCLUSIONS

A series of three-dimensional flow simulations, including film cooling, have been per-
formed for two advanced transonic turbine geometries. The predicted results indicated sig-
nificantly better performance of the FFR design compared to the EMD geometry. These
results support the conclusions of a series of two-dimensional simulations, which indicated

that the performance increases were the result of weakened pressure and shock reflections
off the low-pressure turbine vane.
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dW/W_,_,,, (prs)

dW/W_,,,,, (sct )

(a,),,, i (deg)

(_),.j (deg)

HPT vane HPT blade LPT vane LPT blade

1540.1 1546.1 1997.9 1361.4

0.0995 0.0859 0.03468 0.01157

0.0250 0.0093 0.03468 --

10.0 10.0 10.0 10.0

0.0 0.0 0.0 0.0

Table 1: Film cooling injection parameters for the EMD configuration

T,._(R)

dW/W,.,., (pr_)

dW/W,.,o,(_ct)

(a,);,, i (deg)

(a2)i,_i (deg)

HPT vane HPT blade LPT vane LPT blade

1572.9 1588.4 2036.2 1963.6

0.07758 0.07157 0.025215 0.01336

0.03130 0.00800 0.025215

10.0 10.0 10.0 10.0

0.0 0.0 0.0 0.0

Table 2: Film cooling injection parameters for the FFR configuration
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HPT vane HPT blade LPT vane LPT blade

0.1125 0.9020 0.6075 0.7181

0.1125 0.3690 0.6075

0.9101 0.6347 0.7049

0.9101 1.1903 0.7049

0.3793

0.4983

0.8515

0° 74.41 ° -44.57 ° -62.62 °

0° 47.73 ° -44.57 ° -29.13 °

0 ° -23.41 ° 9.56 ° 5.18 °

0 o -22.27 ° 9.56 ° 5.26 °

74.82 ° -47.46 ° -63.73 ° 33.95 °

74.82 ° -68.84 ° -63.73 ° 61.09 °

6.99 ° 2.76 °

6.99 ° -2.91

-5.31 o -9.31 °

-5.31 ° -12.94 °

Table 3: Steady flow quantities at midspan for the EMD configuration, no cooling
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Mi,_(abs L

Mi,,(relL

llZ[ o_,t ( a bs

¢i,,(abs_

¢in(rel)

HPT vane HPT blade LPT vane LPT blade

0.1156 0.9052 0.5867 0.7383

0.1156 0.3461 0.5867 0.3672

0.9125 0.6081 0.7348 0.4840

0.9125 1.1865 0.7348 0.8662

0° 75.78 ° -45.33 ° --64.98 °

0° 49.29 ° -45.33 ° --31.82 °

0° -26.37 ° 10.57 ° 7.94 °

0° -8.12 ° 10.57 ° 0.64 °

76.00 ° -47.09 ° -66.01 ° 33.65 °

76.00 ° -68.80 ° -66.01 ° 62.20 °

7.18 ° 10.59 ° -2.13 ° -12.75 °

7.18 ° 15.06 -2.13 ° --23.42 °

Table 4: Steady flow quantities at midspan for the EMD configuration, cooling
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M,n(ab )

i,,.(,'d)

Mo_t(abs)

Mou,(,'d)

j3o,,t( abs )

HPT vane HPT blade LPT vane LPT blade

0.1154 0.8809 0.6276 0.7281

0.1154 0.3416 0.6276 0.3926

0.8809 0.6276 0.7281 0.5129

0.8809 1.1865 0.7281 0.8453

0° 75.24 ° -39.89 ° -63.27 °

0 ° 42.88 ° -43.99 ° -32.38 °

0 o -38.83 ° 17.08 ° 6.15 °

0 o -8.48 ° 17.08 ° 5.64 °

75.24 ° -39.89 ° -63.27 ° 31.56 °

75.24 ° -69.87 ° -63.27 ° 61.36 °

-2.16 ° 18.40 ° 6.55 ° 31.50 °

-2.16 ° 30.48 ° 6.55 ° -2.95 °

Table 5: Time-averaged flow quantities at midspaa for the EMD configuration, cooling
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M .,(abs)

M,,,(,'el)

Mout(abs)

Mo,.,(,'el)

f3_,_(ab,s )

Z,.(,'e0

d2o,,t(ab,s )

HPT vane

0.1205

HPT blade

0.8516

0.1205 0.2975

0.8654 0.5357

0.8654 1.1181

0° 77.08 °

LPT vane

0.5257

0.5257

0.8932

0.8932

-42.57 °

0° 44.97 ° -42.57 °

0 ° -34.98 ° 10.45 °

-33.69 °o 10.45 °

LPT blade

0.8949

0.4762

0.5517

0.9632

-68.62 °

-44.69 °

23.59 °

24.14 °

76.72 ° -43.59 ° -69.44 ° 36.70 °

76.72 ° -69.79 ° -69.44 ° 62.73 °

23.18 ° -2.25 ° -5.98 ° -6.50 °

23.18 ° -9.19 -5.98 ° -11.42 °

Table 6: Steady flow quantities at midspan for the FFR configuration, no cooling

18



Mo,,t(abs)

_,_(abs)

Z,n(rel)

¢;n(abs)

HPT vane HPT blade LPT vane LPT blade

0.1158 0.8642 0.5193 0.8564

0.1158

0.8631

0.8631

0.2938 0.5193 0.4673

0.5291 0.8763 0.5603

1.1139 0.8763 0.9665

0° 75.77 ° -36.65 ° -68.11 °

0 ° 38.60 ° -36.65 ° -43.07 °

o 9.77 °-5.83 ° 28.56 °

0 ° -28.69 ° 9.77 ° 19.66 °

75.76 ° -43.45 ° -68.76 ° 41.95 °

75.76 ° -69.88 ° -68.76 ° 64.57 °

16.12 ° -2.49 ° -8.35 ° -6.12 °

16.12 ° -7.99 -8.35 ° -11.88 °

Table 7: Steady flow quantities at midspan for the FFR configuration, cooling
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Mi,_(abs)

Mi (rel)

Mo ,(abs)

Mo  (rel)

3i (abs)

¢i,_(abs

3o_,t(abs)

HPT vane HPT blade LPTvane LPT blade

0.1158 0.7739 0.5178 0.8636

0.1158 0.2235 0.5178 0.4038

0.7739 0.5178 0.8636 0.5606

0.7739 1.0968 0.8636 0.9635

0 ° 76.86 ° -34.82 ° -67.76 °

0 18.00 ° -34.82 ° -43.07 °

0° -40.38 ° 10.60 ° -36.01 °

0 ° -33.73 ° 10.60 ° 1.64 °

-67.76 ° 37.39 °

-67.76 ° 63.33 °

-36.01 ° 9.12 °

-36.01 ° 24.24 °

-34.82 °76.86 °

76.86 ° -65.02 °

-40.38 ° 10.60 °

57.87-40.38 °

Table 8: Time-averaged flow quantities at midspan for the FFR configuration, cooling

EMD (Steady, no cooling)

EMD (Steady, cooling)

ENID (Unsteady, cooling)

FFR (Steady, no cooling)

FFR (Steady, cooling)

FFR (Unsteady, cooling)

HPT Stage

0.813

LPT Stage

0.763

0.797 0.788

0.845 0.729

0.858 0.804

0.869 0.834

0.928 0.756

Table 9: Efficiencies of the HPT and LPT stages in the steady/unsteady simulations
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Figure 1: Time-averaged surface pressure coefficient distributions at 10% span - EMD
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Figure 2: Time-averaged surface pressure coefficient distributions at 50% span - EMD
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Figure 3: Time-averaged surface pressure coefficient distributions at 90% span - EMD
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Figure 4: Time-averaged surface pressure coefficient distributions at 10% span - FFR
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Figure 5: Time-averaged surface pressure coef_cient distributions at 50% span - FFR
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Figure 6: Time-averaged surface pressure coemcient distributions at 90% span - FFR.
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Figure 7: Absolute total pressure distribution at the HPT vane exit - EMD
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Figure 8: Absolute total temperature distribution at the HPT vane exit - EMD
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Figure 9: Absolute Mach number distribution at the HPT vane exit - EMD
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Figure 10: Absolute flow pitch angle distribution at the HPT vane exit - EMD
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Figure 11: Absolute total pressure distribution at the HPT blade exit - EMD
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Figure 12: Relative total pressure distribution at the HPT blade exit - EMD
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Figure 13: Absolute total temperature distribution at the HPT blade exit - EMD
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Figure 14: Relative total temperature distribution at the HPT blade exit - EMD
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Figure 15: Absolute Mach number distribution at the HPT blade exit - EMD

1.10"

0.70

S/SPAN

0.30

-- PASSAGE 1

- - - PASSAGE 2 -.__
..... PASSAGE 3 .. ".'.'.'.'.'.'.'.'.'7__

......y

--0"100.60 ' 0.[_0 ' 1.CI0 ' 1.20 ' 1.40
M(rel)

Figure 16: Relative Mach number distribution at the HPT blade exit - EMD
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Figure 17: Absolute flow pitch angle distribution at the HPT blade exit - EMD
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Figure 18: Relative flow pitch angle distribution at the HPT blade exit - EMD
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Figure 19: Absolute total pressure distribution at the LPT vane exit - EMD
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Figure 20: Absolute total temperature distribution at the LPT vane exit - EMD
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Figure 21: Absolute Mach number distribution at the LPT vane exit - EMD
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Figure 22: Absolute flow pitch angle distribution at the LPT vane exit - EMD
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Figure 23: Absolute total pressure distribution at the LPT blade exit - EMD
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Figure 24: Relative total pressure distribution at the LPT blade exit - EMD
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Figure 25: Absolute total temperature distribution at the LPT blade exit - EMD
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Figure 26: Relative total temperature distribution at the LPT blade exit - EMD
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Figure 27: Absolute Mach number distribution at the LPT blade exit - EMD
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Figure 28: Relative Mach number distribution at the LPT blade exit - EMD
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Figure 29: Absolute flow pitch angle distribution at the LPT blade exit - EMD
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Figure 30: Relative flow pitch angle distribution at the LPT blade exit - EMD
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Figure 31: Absolute total pressure distribution at the HPT vane exit - FFR.
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Figure 32: Absolute total temperature distribution at the HPT vane exit - FFR
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Figure 33: Absolute Mach number distribution at the HPT vane exit - FFR
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Figure 34: Absolute flow pitch angle distribution at the HPT vane exit - FFR
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Figure 35: Absolute total pressure distribution at the HPT blade exit - FFR
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Figure 36: Relative total pressure distribution at the HPT blade exit - FFR
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Figure 37: Absolute total temperature distribution at the HPT blade exit - FFR
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Figure 38: Relative total temperature distribution at the HPT blade exit - FFR
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Figure 39: Absolute Mach number distribution at the HPT blade exit - FFR
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Figure 40: Relative Mach number distribution at the HPT blade exit - FFR
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Figure 41: Absolute flow pitch angle distribution at the HPT blade exit - FFR
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Figure 42: Relative flow pitch angle distribution at the HPT blade exit - FFR
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Figure 43: Absolute total pressure distribution at the LPT vane exit - FFR.
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• Figure 44: Absolute total temperature distribution at the LPT vane exit - FFR
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Figure 45: Absolute Mach number distribution at the LPT vane exit - FFR.
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Figure 46: Absolute flow pitch angle distribution at the LPT vane exit - FFR.
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Figure 47: Absolute total pressure distribution at the LPT blade exit - FFR
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Figure 48: Relative total pressure distribution at the LPT blade exit - FFR
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Figure 49: Absolute total temperature distribution at the LPT blade exit - FFR
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Figure 50: Relative total temperature distribution at the LPT blade exit - FFR
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Figure 51: Absolute Mach number distribution at the LPT blade exit - FFR
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Figure 52: Relative Mach number distribution at the LPT blade exit - FFR
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Figure 53: Absolute flow pitch angle distribution at the LPT blade exit - FFR
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Figure 54: Relative flow pitch angle distribution at the LPT blade exit - FFR
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Figure 55: Instantaneousstatic pressurecontoursat rnidspan of HPT vane - EMD
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Figure 56: Instantaneous entropy contours at midspan of HPT va_e - EMD
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Figure 57: Instantaneous static pressure contours at midspan of HPT blade - EMD
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Figure 58: Instantaneous entropy contours at midspan of HPT blade - EMD
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Figure 59: Instanganeous static pressure contours at midspan of LPT vane - EMD
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Figure 60: Instantaneous entropy contours at midspan of LPT vane - EMD
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Figure 61: Instantaneous static pressure contours at midspan of LPT blade - EMD
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Figure 62: Instantaneous entropy contours at midspan of LPT blade - EMD
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Figure 63: Instantaneous static pressure contours at midspan of HPT vane - FFR
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Figure 64: Instantaneousentropy contoursat midspanof HPT vane- FFR
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Figure 65: Instantaneousstatic pressurecontours at midspan of HPT blade - FFR
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Figure 66: Instantaneous entropy contours at midspan of HPT blade - FFR
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Figure 67: Instantaneous static pressure contours at midspan of LPT vane - FFR
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Figure 68: Instantaneous entropy contours at midspan of LPT vane - FFR
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Figure 69: Instantaneous static pressure contours at midspan of LPT blade - FFR
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Figure 70: Instantaneous entropy contours at midspan of LPT blade - FFR
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